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• We need to find a derivation from the axiom to the program analysed.
• However, depending on the grammar, the number of possible derivations is 

extremely large.
• There are general strategies to solve any problem with blind search:

• Breadth-first search and depth-first search.
• In breadth-first search, it is guaranteed that we shall find a solution.
• In depth-first search, there might be branches with infinite lengths. If 

that is not the case, sometimes it is possible to find a solution with less 
effort than in breadth-first search.

Top-down analysis
Introduction
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• We can consider “top-down analysis with a backtracking parser“ as a 
particular case of depth-first blind search. 

• The criterion to decide whether a rule is applicable in a given position is the 
coincidence with the non-terminal that is in the left-hand side of the rule.

• We shall not continue along an analysis path when we have terminals that 
do not coincide with the program.

• We can finish the process in two situations:
• If we have been able to generate all the terminals in the program 

sequence. In this case, we have been able to construct a syntactic tree 
for the program, which is correct.

• If it was not possible to finish with the derivation tree, but we have tried 
all the rules in each position and there is no other option available to try. 
In this case, the program will be syntactically incorrect.

• This technique will be illustrated with the following examples:

Top-down analysis
Top-down with backtracking: concepts

6

aaabbb

Top-down analysis

• Syntactic analysis of the word aaabbb
Previous examples
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i+--i

Top-down analysis
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E

Previous examples
• Analysis of the word i+--i
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i++i

Top-down analysis

• Consider the analysis of i++i
G=<{E},{-,+,i}

{E→-E
|i
|E+E},
E>

E

Previous examples
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• If there are left-recursive rules, the analysis of the word may provoke that the 
algorithm enters an infinite loop.

• In the following slides, we shall study the possibilities for avoiding that fact, 
and we shall see other properties of grammars which are interesting for 
building efficient top-down syntactic analysers.

Top-down analysis
Conclusions
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• It is easy to build LL(1) analysers, in which the input is read from left to right, and the 
derivations in the tree are also made from left to right. The number “1” means that it 
needs one look-ahead symbol from the input string.

• In order to build an LL(1) analyser, the grammar has to be expressed in LL(1) form.
• Possible steps to transform a grammar into LL(1) form are:

• Removing all the left-recursive rules.
• Removing inaccessible symbols.
• Removing rules that generate the empty word: A→λ
• Expressing the grammar in Greibach Normal Form.
• Left factorisation (which is a necessary condition for LL(1) grammars)

Properties of grammars for top-down analysis
Properties
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i+--i

Greibach Normal Form

G=<{E},{-,+,i}
{E→-E

|i
|E+E},
E>

i - E

E

+E E

- E

i

Removing left-recursive rules

G=<{E},{-,+,i}
{E→-EE’|iE’
E’→+EE’|λ},

E>

E

i E’

+ E E’

- E E’

- E E’

i E’

λ

λ

λ

λ

• Let us analyse the following example:
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Greibach Normal Form
Removing left-recursive rules

• It is difficult to think of a general procedure from the previous example.
• However, the technique can be generalised.
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.

G=<{E,T,F},
{-,*,i}
{E→E+T|T
T→T*F|F
F→i},
E>

Greibach Normal Form
Removing left-recursive rules: first example

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→TE’
E’→+TE’|λ
T→FT’
T’→*FT’|λ
F→i},
E>

A→Aα1|...|Aαn|β1|...|βm
A→β1X|...|βmX
X→α1X|...|αnX|λ

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→TE’
E’→+TE’|λ
T→FT’
T’→*FT’|λ
F→i},
E>
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Every context-independent grammar can be transformed into an equivalent 
grammar without left-recursive rules.

Greibach Normal Form
Lemma: removing left-recursive rules

• A left-recursive rule is a rule of the following form:
A→Ax,,A ∈ ΣN ∧ x ∈ (ΣT∪ΣN)*

• The lemma is shown in a constructive way doing, for each recursive rule, the 
following treatment:

• Let < ΣT, ΣN, S, P > be a grammar with left-recursive rules:
• A→Aα1|...|Aαn|β1|...|βm
• Where {βi }ni=1 represent all the non-left-recursive rules

• We can substitute the previous rules by the following set of rules 
• A→β1X|...|βmX
• X→α1X|...|αnX|λ

54

We can modify a rule by substituting a non-terminal in its right-hand 
side by all the right-hand sides of the rules for that non-terminal.

The grammar obtained in this way generates the same language as 
the original one.

Greibach Normal Form
Removing lambda-rules
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Greibach Normal Form
Removing lambda-rules

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→TE’
E’→+TE’|λ
T→FT’
T’→*FT’|λ
F→i},
E>

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→TE’
E’→+TE’|λ
T→iT’
T’→*FT’|λ
F→i},
E>F→i (i can be put in

place of F in)
T→FT’
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Greibach Normal Form
Removing lambda-rules

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’
E’→+TE’|λ
T→iT’
T’→*FT’|λ
F→i},
E>

T→iT’ (iT’ is set in the 
place of T )  E→TE’

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→TE’
E’→+TE’|λ
T→iT’
T’→*FT’|λ
F→i},
E>
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We can delete a rule for a non-terminal symbol, provided that we also 
add new rules by substituting all appearances of the non-terminal 

by all the right-hand sides of the rules eliminated.

Greibach Normal Form
Removing lambda-rules

• A case with special interest is the rules that generate the empty word, λ
• A lambda-rule is a rule of the following form:

A→λ,,A ∈ ΣN
• It is used to remove a non-terminal symbol from a word.
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Greibach Normal Form
Removing lambda-rules

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’
E’→+TE’|λ
T→iT’
T’→*FT’|λ
F→i},
E>

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’|iT’
E’→+TE’|+T
T→iT’
T’→*FT’|λ
F→i},
E>
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Greibach Normal Form
Removing lambda-rules

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’|iT’
E’→+TE’|+T
T→iT’
T’→*FT’|λ
F→i},
E>

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’|iT’|iE’|i
E’→+TE’|+T
T→iT’|i
T’→*FT’|*F
F→i},
E>
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i+i+i

Greibach Normal Form

G=<{E,T,F},
{-,*,i}
{E→E+T|T
T→T*F|F
F→i},
E>

T

E

+E T

i

Removing lambda-rules

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’|iT’|iE’|i
E’→+TE’|+T
T→iT’|i
T’→*FT’|*F
F→i},
E>

• Let us test some derivations:

E

+E T

F i

F i

F

T+ E’

i

E

i E’

T+

i
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i*i*i

Greibach Normal Form

G=<{E,T,F},
{-,*,i}
{E→E+T|T
T→T*F|F
F→i},
E>

E

T

i

Removing lambda-rules

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’|iT’|iE’|i
E’→+TE’|+T
T→iT’|i
T’→*FT’|*F
F→i},
E>

• Let us test some derivations:

*T F

F i

i

F* T’

i

E

i T’

*T F F*i
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i*i+i

Greibach Normal Form

G=<{E,T,F},
{-,*,i}
{E→E+T|T
T→T*F|F
F→i},
E>

E

+E T

i

Removing lambda-rules

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’|iT’|iE’|i
E’→+TE’|+T
T→iT’|i
T’→*FT’|*F
F→i},
E>

• Let us test some derivations:

E

*T F

F i i

F

i

* F T+

E

T’i E’

i
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• Informally,

• Formally,

< ΣT, ΣN, S, P >, context-independent, is in Greibach Normal Form is ⇔(def)
∀ r∈P r=A→ax ,, a∈ΣT ∧ x∈Σ*N

A context-independent grammar is in Greibach Normal Form if and only if the right-
hand-side of all the rules starts with a terminal symbol, followed, optionally, by non-

terminals.

Greibach Normal Form
Definition
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Every context-independent grammar which does not generate the empty word 
can be expressed in Greibach Normal form.

Greibach Normal Form
Theorem
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Greibach Normal Form
Proof of the theorem

• It will be a constructive proof, showing how the grammar can be transformed.
• The transformation is performed in the following way:

1. If the language contains the empty word, add the following rule (S is the axiom)
S→λ

2. Remove all the left-recursive rules applying the lemma seen before.
3. The following partial ordering will be established between the non-terminal 

symbols, deduced from the production rules:

Ai<Aj ⇔ (∃α∈ΣT* | Ai→Ajα∈P) ∧ (¬∃β∈ΣT* | Aj→Aiβ∈P)

If this ordering produces a loop, i.e., if 
∃α,β∈ΣT* | Ai→Ajα∈P ∧ Aj→Aiβ∈P

we can choose any of the two following options:
• Ai<Aj
• Aj<Ai
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.

G=<{E,T,F}, 
{-,*,i}
{E→E+T|T, T→T*F|F, F→i},
E>

Greibach Normal Form
Example of step 3

• The following partial ordering can be deduced from the rules in the grammar:
• E→E+T does not provide any ordering.
• From E→T we can deduce E<T
• From T→T*F we do not get any ordering.
• From T→F we can deduce T<F
• From F→i we cannot deduce anything.

• In conclusion,
E<T<F
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Greibach Normal Form
Proof of the theorem

4. We can classify the rules in the following three groups:
• Type 1: Rules of the form

A→ax,,a∈ΣT, x∈Σ*
• Type 2: Rules of the form

A→Bx,, A,B∈ΣN, x∈Σ* ∧ A<B
• Type 3: Rules of the form

A→Bx,, A,B∈ΣN, x∈Σ* ∧ B<A
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.

G’=<{E,E’,T,T’,F}, {-,*,i}
{E→TE’, E’→+TE’|λ, T→FT’, T’→*FT’|λ, F→i},
E>

Greibach Normal Form
Example of step 4

• Type 1 rules:
• E’→+TE’
• T’→*FT’
• F→i

• Type 2 rules:
• E→TE’
• T→FT’

• There are no type 3 rules.
• The lambda-rules will be seen later.
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Greibach Normal Form
Proof of the theorem

5. All the rules of type 3 will be deleted.
• Type 3: Rules of the form

A→Bx,, A,B∈ΣN, x∈Σ* ∧ B<A
• To do this,

1. We replace B with all the right-hand sides for B.
2. This process is repeated for all the type-3 rules.
3. If, during this process, there appear new left-recursive rules, we 

transform them using the procedure seen before.
4. If there appear inaccessible symbols, we eliminate them.
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G’=<{A,B,C}, {a,b}
{A→BC, B→CA|a, C→AB|b},
A>

Greibach Normal Form
Example of step 5

• Type 3 rules:
• C→AB
• We substitute A with its right-hand sides (BC): C→ BCB

G’=<{A,B,C}, {a,b}
{A→BC, B→CA|a, C→BCB|b},
A>
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.Greibach Normal Form
Example of step 5

• Now, there is a new type-3 rule:
• C→BCB
• We substitute B with its left-hand sides (CA|a): C→CACB|aCB

G’=<{A,B,C}, {a,b}
{A→BC, B→CA|a, C→ CACB|aCB|b},
A>
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Greibach Normal Form
Proof of the theorem

6. At this point, there should not be more type-3 rules. The next step will be the 
removal of 2-type rules, starting with the non-terminals which are at the end of 
the partial ordering.

• Type 2: Rules of the following form:
A→Bx,, A,B∈ΣN, x∈Σ* ∧ A<B

• To do this,
1. B will be replaced by all the right-hand sides of the rules for B.
2. This is repeated until we do not have any more type-2 or type-3 rules.
3. If there appear new left-recursive rules, they will also be removed.
4. Inaccessible symbols will also be removed.
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G’=<{E,E’,T,T’,F}, {-,*,i}
{E→TE’, E’→+TE’|λ, T→FT’, T’→*FT’|λ, F→i},
E>

Example of step 6

• There are two type-2 rules, with the ordering  E<T<F
• E→TE’
• T→FT’

• Firstly, we substitute  F in T→FT’ with its right-hand sides (i), and obtain:
T→iT’

G’=<{E,E’,T,T’,F}, {-,*,i}
{E→TE’, E’→+TE’|λ, T→iT’, T’→*FT’|λ, F→i},
E>

Greibach Normal Form
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.Greibach Normal Form
Example of step 6

• Next, we substitute T in E→TE’ with its right-hand sides, (iT’). We obtain the rule
E→iT’E’

G’=<{E,E’,T,T’,F}, {-,*,i}
{E→TE’, E’→+TE’|λ, T→iT’, T’→*FT’|λ, F→i},
E>

G’=<{E,E’,T,T’,F}, {-,*,i}
{E→iT’E’, E’→+TE’|λ, T→iT’, T’→*FT’|λ, F→i},
E>
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Greibach Normal Form
Proof of the theorem

7. Now, all the rules belong to type 1: they all have the following form:
A→ax,,a∈ΣT, x∈Σ*

• The only different with respect to Greibach Normal Form may be due to 
rules having more than one terminal symbol in the right-hand side.

• This can be solved with a trivial substitution, adding a new non-terminal 
symbol, as in the following example.

A→abC
We can replace that rule with:

A→aBC, B→b
• Where B is a new non-terminal symbol
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G’=<{A,X}, {a,b}
{A→baX|aX, X→baX|λ},
A>

Greibach Normal Form
Example of step 7

• There are two rules in which the terminal symbol a has to be replaced by the new 
non-terminal symbol A’:
• We add the new rule A’→a
• We substitute A→baX by A→bA’X
• We substitute X→baX by X→bA’X

G’=<{A,X,A’}, {a,b}
{A→bA’X|aX, X→bA’X|λ, A’→a},
A>
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Greibach Normal Form
Proof of the theorem

8.The last thing to do is the treatment of lambda-rules.
• In Greibach Normal Form, these rules are forbidden. The only 

exception is when the language contains the empty word, in which
there has to be, necessarily, a lambda rule for the axiom of the
grammar.

• They should be removed using the procedure previously studied.

NOTE: For the purpose of building LL(1) compilers, the grammar needs not 
be exactly in Greibach Normal form:

• Some of the lambda rules will not be wrong for an LL(1) grammar.
• Otherwise, they will be removed using the procedure already seen.
• When these rules are removed, sometimes it is difficult to comply 

with all the conditions for LL(1) grammars.
• In this case, it may be necessary to alter the grammar manually 

to obtain an equivalent one which can be restated as an LL(1) 
grammar.
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G=<{E,T,F},
{-,*,i}
{E→E+T|T
T→T*F|F
F→i},
E>

Greibach Normal Form
Example 1

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→TE’
E’→+TE’|λ
T→FT’
T’→*FT’|λ
F→i},
E>

A→Aα1|...|Aαn|β1|...|βm
A→β1X|...|βmX
X→α1X|...|αnX|λ

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→TE’
E’→+TE’|λ
T→FT’
T’→*FT’|λ
F→i},
E>

1. As the language does not contain the empty word, there is nothing to do.
2. Remove all the left-recursive rules:
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.

G=<{E,T,F}, 
{-,*,i}
{E→E+T|T, T→T*F|F, F→i},
E>

Greibach Normal Form
Example 1

• The following ordering will be deduced from the previous rules:
• From E→E+T we do not deduce anything
• From E→T we deduce E<T
• From T→T*F we deduce nothing
• From T→F we deduce T<F
• From F→i we can’t deduce anything.

• In conclusion,
E<T<F

3. We establish the partial ordering for the non-terminal symbols. In general, we can 
establish the ordering using the non-terminal symbols in the original grammar, 
and the ones added in step 2 may be added to the ordering if necessary.
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G’=<{E,E’,T,T’,F}, {-,*,i}
{E→TE’, E’→+TE’|λ, T→FT’, T’→*FT’|λ, F→i},
E>

Greibach Normal Form
Example 1

• Type-1 rules
• E’→+TE’
• T’→*FT’
• F→i

• Type-2 rules
• E→TE’
• T→FT’

• No type-3 rules.
• Lambda rules will be treated at the end.

4. The rules will be classified in three groups.
5. The grammar does not contain type-3 rules, so there is nothing to be done
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G’=<{E,E’,T,T’,F}, {-,*,i}
{E→TE’, E’→+TE’|λ, T→FT’, T’→*FT’|λ, F→i},
E>

Greibach Normal Form
Example 1

• There are two type-2 rules, with the ordering E<T<F
• E→TE’
• T→FT’

• We first solve F in T→FT’ and replace it by its right-hand sides (i), and obtain
T→iT’

G’=<{E,E’,T,T’,F}, {-,*,i}
{E→TE’, E’→+TE’|λ, T→iT’, T’→*FT’|λ, F→i},
E>

6. Type-2 rules removal:
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.Greibach Normal Form
Example 1

• Next, we delete T in E→TE’and replace it with its right-hand sides (iT’), to obtain
E→iT’E’

G’=<{E,E’,T,T’,F}, {-,*,i}
{E→TE’, E’→+TE’|λ, T→iT’, T’→*FT’|λ, F→i},
E>

G’=<{E,E’,T,T’,F}, {-,*,i}
{E→iT’E’, E’→+TE’|λ, T→iT’, T’→*FT’|λ, F→i},
E>
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Greibach Normal Form
Example 1

7. As there are no terminal symbols incorrectly set in the right-hand sides of the 
rules, there is nothing to do at this step.
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Greibach Normal Form
Example 1

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’
E’→+TE’|λ
T→iT’
T’→*FT’|λ
F→i},
E>

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’|iT’
E’→+TE’|+T
T→iT’
T’→*FT’|λ
F→i},
E>

8. In the case that we want to obtain the grammar in Greibach Normal form, the last 
step would be to remove all the lambda-rules.

REMEMBER: this step is not strictly necessary for LL(1) parsers
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Greibach Normal Form
Example 1

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’|iT’
E’→+TE’|+T
T→iT’
T’→*FT’|λ
F→i},
E>

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’|iT’|iE’|i
E’→+TE’|+T
T→iT’|i
T’→*FT’|*F
F→i},
E>

When there are no more lambda-rules, we have the grammar, finally, in GNF.
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Top-down analysis

• Top-down analysis
• Blind search, depth-first search and width-first search.
• Slow backtracking

• Top-down analysis with LL(1) grammars
• Procedures for modifying grammars

• Elimination of left-recursion
• Elimination of lambda-rules

• Greibach Normal Form
• Definition
• Procedure for obtaining the GNF of a grammar
• Examples

• LL(1) grammars
• Initial examples
• Definition of LL(1) grammars
• Syntactic analysers based on LL(1) grammars

Overview
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Adjusting a grammar in Greibach Normal Form to LL(1)
Changes in step 8

• Some lambda rules are not incorrect in LL(1) grammars.
• Therefore, we are only going to remove those that are not right.

• The following procedure will be followed:
• When a non-terminal has a lambda rule, e.g.

X→λ

• The following situation may arise: that the same non-terminal has 
other rules with a different right-hand side. Because we are in step 8, 
we know that all rules are now type-1 rules, starting with a terminal 
symbol.

X→aα,, a∈ΣT ∧ α∈Σ*
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Adjusting a grammar in Greibach Normal Form to LL(1)
Changes in step 8

• Imagine a syntactic derivation tree for a word (the terminal symbols are 
represented in red colour)

• If X is the only non-terminal that remains, there would be the following two 
possibilities:

titjtltktbtatstn
t1t2t3t4t5t6t7t8

X

titjtltktbtatstn
t1t2t3t4t5t6t7t8

X

titjtltktbtatstn
t1t2t3t4t5t6t7t8 aα

X→λ X→aα
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Adjusting a grammar in Greibach Normal Form to LL(1)
Changes in step 8

• Imagine that we are doing the top-down parsing of that word, and we are just 
before the symbol a

• Intuitively, the efficiency of LL(1), which is better than simple “top-down 
parsing with slow backtracking”, is due to the indexation of the  right-hand 
sides, for each non-terminal, using the next terminal to be analysed.

• This will be possible only if each non-terminal has just one right-hand side 
starting with each terminal.

• If we do not have lambda rules (X→λ), the top-down analysis can be done 
completely without any branching in the analysis.

t1t2t3t4t5t6t7t8
t1t2t3t4t5t6t7t8ati...tn

XY1...Ym
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Adjusting a grammar in Greibach Normal Form to LL(1)
Changes in step 8

• If we had the following rules for a non-terminal X,
X→ t1β1
···

X→ ti-1βi-1
X→ aα

X→ ti+1βi+1
···

X→ tkβk
,,{t1,...,ti-1,a,ti+1,...,tk}⊆ΣT

∧tp≠tq≠a ∀∈p,q∈{1,...,i-1,i+1,...k}
∧{β1,...,βi-1,a,βi+1,...,βk}⊆ΣN*

• There would be just one possibility to choose if the next symbol in the 
input string were “a”.
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Adjusting a grammar in Greibach Normal Form to LL(1)
Changes in step 8

• Lambda-rules will be problematic whenever they produce several 
possibilities of choosing the next rule to apply.

t1t2t3t4t5t6t7t8aα
t1t2t3t4t5t6t7t8ati...tn

Y1...Ym
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Adjusting a grammar in Greibach Normal Form to LL(1)
Changes in step 8

• Let us imagine that we have the following three rules:  X→aα, X→λ y Y1→aγ1

t1t2t3t4t5t6t7t8aα
t1t2t3t4t5t6t7t8ati...tn

Y1...Ym

t1t2t3t4t5t6t7t8
t1t2t3t4t5t6t7t8ati...tn

XY1...Ym

t1t2t3t4t5t6t7t8
t1t2t3t4t5t6t7t8ati...tn

XY1...Ym
λ t1t2t3t4t5t6t7t8

t1t2t3t4t5t6t7t8ati...tn

Y1...Ym

t1t2t3t4t5t6t7t8aγ1
t1t2t3t4t5t6t7t8ati...tn

Y2...Ym

X→λ

Borrado de X Y1→aγ1

X→aα

• A terminal “a” can be derived directly from X (X→aα), and from Y1, which follows 
X (Y1→aγ1)
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Adjusting a grammar in Greibach Normal Form to LL(1)
Changes in step 8

• In order to identify these situations, we need to know:
• Which are the first terminals derived by X (in our example, a)
• Which is the first terminal that can be derived by what is after X, i.e. next(X) 

• The following figures describe the two possible cases:

t1 t2 t3 t4 t5 t6 t7 t8
t1 t2 t3 t4 t5 t6 t7 t8 ati...tn

X Y1...Ym

λ
t1 t2 t3 t4 t5 t6 t7 t8
t1 t2 t3 t4 t5 t6 t7 t8 ati...tn

X Y1...Ym

λ

B

σ

B→σXY1

ω

V
τ

V→τIWω

W
W→Y1...Ym

I

ξ

I→ξX
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Adjusting a grammar in Greibach Normal Form to LL(1)
Step 8 for example 1

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’
E’→+TE’|λ
T→iT’
T’→*FT’|λ
F→i},
E>

Who can follow E’? next(E’)

We study all the right-hand sides that contain  E’

8. If we want to generate a top-down syntactic analyser with the LL(1) technique, we 
have to study, in step 8, which lambda-rules produce ambiguities.

• Let’s start with the lambda-rule E’→λ.
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Adjusting a grammar in Greibach Normal Form to LL(1)
Step 8 for example 1

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’
E’→+TE’|λ
T→iT’
T’→*FT’|λ
F→i},
E>

Who can follow E’? next(E’)

We study all the right-hand sides that contain  E’

In the two rules, E’ appears as the last symbol in 
the right-hand side.

E’can be followed by anything that follows the left-
hand side of those rules: 
• E’
• E

8. (cont.)
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Adjusting a grammar in Greibach Normal Form to LL(1)
Step 8 for example 1

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’
E’→+TE’|λ
T→iT’
T’→*FT’|λ
F→i},
E>

Therefore:
• next(E’) is included in next(E’) – obvious
• next(E) is included in next(E’). As E is the axiom, 

and it does not appear in any other right-hand 
side. next(E) is the end-of-program symbol, $.

So next(E’) is {$}.

On the other hand, first(E’) = {+}

8. (cont.)

• We can conclude that the first lambda rule is correct for LL(1), and can be left like 
that.
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Adjusting a grammar in Greibach Normal Form to LL(1)
Step 8 for example 1

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’
E’→+TE’|λ
T→iT’
T’→*FT’|λ
F→i},
E>

Who can follow T’? next(T’)

We study all the right-hand sides that contain  T’

8. (cont.)

• Let us continue with the second lambda rule.
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Adjusting a grammar in Greibach Normal Form to LL(1)
Step 8 for example 1

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’
E’→+TE’|λ
T→iT’
T’→*FT’|λ
F→i},
E>

Who can follow T’? next(T’)

We study all the right-hand sides that contain  T’

There is one rule in which T’ is followed by E’. 
In two other rules, it appears as the last symbol 

of the right-hand side.

Therefore, next(T’) will be:
• first(E’)
• next(T)
• next(T’) -- obvious

8. (cont.)
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Adjusting a grammar in Greibach Normal Form to LL(1)
Step 8 for example 1

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’
E’→+TE’|λ
T→iT’
T’→*FT’|λ
F→i},
E>

We can focus now on next(T)
Let us see all the rules in which T appears in the 

right-hand side.

8. (cont.)
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Adjusting a grammar in Greibach Normal Form to LL(1)
Step 8 for example 1

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’
E’→+TE’|λ
T→iT’
T’→*FT’|λ
F→i},
E>

We can focus now on next(T)
Let us see all the rules in which T appears in the 

right-hand side.

It only appears followed by E’. 
Therefore, next(T) = first(E’)

In conclusion, next(T’) will be:
• first(E’)
• next(T) = first(E’)
• next(T’) -- obvious

8. (cont.)

• Therefore, next(T’) = {+}

102

Adjusting a grammar in Greibach Normal Form to LL(1)
Step 8 for example 1

G’=<{E,E’,T,T’,F},
{-,*,i}
{E→iT’E’
E’→+TE’|λ
T→iT’
T’→*FT’|λ
F→i},
E>

Finally, we need to check whether the lambda rule 
produces any ambiguity during the analysis. 

For instance,
• The first terminal derived by T’ is *.
• The terminals in next(T’) are just +.

8. (cont.)

• Because the terminals are different (* y +) we can conclude that the lambda rule is 
appropriate for an LL(1) grammar.
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2

• Obtain, if possible, the LL(1) equivalent grammar from the following one:

G2=<{A,B},
{a,b}
{A→Ba | a
B→Ab | b},
A>
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2

1. The language does not contain the empty word, so there is nothing to do.
2. There are no left-recursive rules, so there is again nothing to do here.
3. We shall establish the partial ordering between the non-terminal symbols.

• From the previous rules, we can deduce two different partial orderings:
• From A→Ba we can deduce A<B
• From B→Ab we can deduce B<A

• In summary, there are two options:
• Option 1: B<A
• Option 2: A<B

• We shall study the two possibilities separately, to see how the choice taken affects 
the result.

G2=<{A,B},
{a,b}
{A→Ba | a
B→Ab | b},
A>
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 1 B<A

• Type 1 rules
• A→a
• B→b

• Type 2 rules
• B→Ab

• Type 3 rules
• A→Ba

4. The rules will be classified in three groups

G2=<{A,B},
{a,b}
{A→Ba | a
B→Ab | b},
A>
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 1 B<A

• Type-3 rules:
• A→Ba

• The B will be replaced by its right-hand sides (Ab and b), and we obtain:
• A→Aba | ba

5. The type-3 rule will be eliminated by substituting  B

G2=<{A,B},
{a,b}
{A→Ba | a
B→Ab | b},
A>

G2=<{A,B},
{a,b}
{A→Aba | ba | a
B→Ab | b},
A>
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 1 B<A

• It can be easily seen that, in this grammar,  B cannot be generated from the axiom.
• It is inaccessible, so we can eliminate it and all the rules where it is at the left-hand 

side:
• B→Ab | b

• In all the steps, we need to check whether there is any inaccessible symbol.

G2=<{A,B},
{a,b}
{A→Aba | ba | a
B→Ab | b},
A>

G2=<{A},
{a,b}
{A→Aba | ba | a},
A>
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 1 B<A

• The rule A→Aba is left-recursive, so we apply the lemma which said:
• If we have a grammar < ΣT, ΣN, S, P >, the left-recursive rules 

• A→Aα1|...|Aαn|β1|...|βm
• will be substituted by

• A→β1X|...|βmX
• X→α1X|...|αnX|λ

• In our example,
• A→baX | aX
• X→baX | λ

• We also need to eliminate all the left-recursive rules that have turned up:

G2=<{A},
{a,b}
{A→Aba | ba | a},
A>

G2=<{A,X},
{a,b}
{A→baX | aX
X→baX | λ},
A>
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 1 B<A

• We define a new non-terminal Z to derive the ‘a’ (Z→a)
• And we substitute the ‘a’ in all the right-hand sides by ‘Z’: (A→bZX y X→bZX)

6. There no type-2 rules to eliminate
7. We eliminate all the terminal symbols that are not in the first position of the rules:

G2=<{A,X},
{a,b}
{A→baX | aX
X→baX | λ},
A>

G2=<{A,X},{a,b}
{A→bZX | aX
X→bZX | λ
Z→a},
A>
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Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 1 B<A

There is just one lambda-rule, for X.

Let us study the set next(X), to see whether it is 
different from first(X).

8. Study of the λ-rules

G2=<{A,X},{a,b}
{A→bZX | aX
X→bZX | λ
Z→a},
A>
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Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 1 B<A

Concerning next(X), it appears in three rules. From 
that, we can conclude that next(X) contains:

• next(A) 
• next(X) - obvious

Because A is the axiom, and it does not appear in 
any right-hand side, we can conclude that next(A) 
will be the end-of-program symbol {$}, and hence 
next(X) will also be {$}.

On the other hand, first(X) = {b}

8. (cont.)

G2=<{A,X},{a,b}
{A→bZX | aX
X→bZX | λ
Z→a},
A>

• This lambda-rule is not wrong for an LL(1) grammar.
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 2 A<B

• Type-1 rules:
• A→a
• B→b

• Type-2 rules:
• A→Ba

• Type-2 rules:
• B→Ab

4. Let us see now 

G2=<{A,B},
{a,b}
{A→Ba | a
B→Ab | b},
A>
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 2 A<B

• Type-3 rules:
• B→Ab

• We replace A with its right-hand sides (Ba and a) to get:
• B→ Bab | ab | b

5. We start by eliminating the type-3 rules from the grammar:

G2=<{A,B},
{a,b}
{A→Ba | a
B→Ab | b},
A>

G2=<{A,B}, {a,b}
{A→Ba | a
B→Bab | ab | b},
A>
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 2 A<B

• The rule  B→Bab is left-recursive, so we apply the lemma.
• In the example, we get:

• B→abX | bX
• X→abX | λ

• Now, we need to eliminate left-recursive rules.

G2=<{A,B}, {a,b}
{A→Ba | a
B→Bab | ab | b},
A>

G2=<{A,B,X}, {a,b}
{A→Ba | a
B→abX | bX
X→abX | λ},
A>
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 2 A<B

• There is one type-2 rule:
• A→Ba

• We substitute  B with all its right-hand sidres (abX y bX) to get:

6. Remove type-2 rules:

G2=<{A,B,X}, {a,b}
{A→Ba | a
B→abX | bX
X→abX | λ},
A>

G2=<{A,B,X}, {a,b}
{A→abXa | bXa | a
B→abX | bX
X→abX | λ},
A>
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 2 A<B

• Now, it is not possible to arrive to B from the axiom, so we can delete it and all the 
rules that have it in the left-hand side:
• B→abX | bX

• As before, we need to check whether there is any inaccessible symbol:

G2=<{A,B,X}, {a,b}
{A→abXa | bXa | a
B→abX | bX
X→abX | λ},
A>

G2=<{A,X}, {a,b}
{A→abXa | bXa | a
X→abX | λ},
A>
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 2 A<B

• First, we can eliminate the symbol b: we define a new non-terminal B to derive it 
(B→b), and we put the non-terminal in the fight-hand sides (A→aBXa y X→aBX)

7. Removal of all the terminals that are not in the first position.

G2=<{A,X}, {a,b}
{A→abXa | bXa | a
X→abX | λ},
A>

G2=<{A,B,X}, {a,b}
{A→aBXa | bXa | a
X→aBX | λ
B→b},
A>
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.Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 2 A<B

• We also have a misplaced terminal a: we define a new non-terminal Z to derive it, 
(Z→a), and we substitute it in the problematic right-hand sides (A→aBXZ | bXZ)

7. (cont.)

G2=<{A,B,X}, {a,b}
{A→aBXa | bXa | a
X→aBX | λ
B→b},
A>

G2=<{A,B,X,Z}, {a,b}
{A→aBXZ | bXZ | a
X→aBX | λ
B→b
Z→a},
A>
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Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 2 A<B

We need to check whether next(X) and first(X) have 
any terminal symbol in common.

8. Study of the λ-rules.

• There is just one lambda-rule.

G2=<{A,B,X,Z}, {a,b}
{A→aBXZ | bXZ | a
X→aBX | λ
B→b
Z→a},
A>
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Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 2 A<B

Let us calculate next(X):
• X appears followed by Z. 
• X also appears at the end of a rule.

Therefore, next(X) will contain:
• first(Z) = a
• next(X) - obvious

8. (cont.)

G2=<{A,B,X,Z}, {a,b}
{A→aBXZ | bXZ | a
X→aBX | λ
B→b
Z→a},
A>
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Adjusting a grammar in Greibach Normal Form to LL(1)
Example 2, option 2 A<B

Let us calculate next(X):
• X appears followed by Z. 
• X also appears at the end of a rule.

Therefore, next(X) will contain:
• first(Z) = a
• next(X) – obvious

8. (cont.)

• So we can conclude that this lambda-rule produces ambiguities during the parsing. 

G2=<{A,B,X,Z}, {a,b}
{A→aBXZ | bXZ | a
X→aBX | λ
B→b
Z→a},
A>

But it is the case that:
• first(X)is the symbol a
• next(X)=first(Z)= a
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LL(1)
Concept

• LL(1) languages are

Those whose grammars appear in Greibach Normal Form, and there are not two 
rules for the same non-terminal, starting with the same terminal symbol in their 

right-hand side.
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LL(1)
Converting from GNF to LL(1)

• A grammar in Greibach Normal Form may not be LL(1)
• For instance,

• Two of the right-hand sides for U start with the same terminal symbol, a.

G2 =<{U,V,W,X,Y,Z,T},
{a,b,c,d,e}

{···
U→aV | aW
V→bX | cY
W→dZ | eT
···},
U>
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LL(1)
Converting from GNF to LL(1)

• Sometimes, this cam be solved with a “common factor”.
• Steps

• Obtain the longest common prefix of the two right-hand sides (in the example 
the symbol a).

• Leave a single right-hand side which starts with that common prefix, and 
which ends with a new non-terminal, e.g. K

G2 =<{U,V,W,X,Y,Z,T},
{a,b,c,d,e}

{···
U→aK
···
V→bX | cY
W→dZ | eT
···},  U>
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LL(1)
Converting from GNF to LL(1)

• The new non-terminal will generate the remaining of the right-hand sides, 
K→V|W.

G2 =<{U,V,W,X,Y,Z,T},
{a,b,c,d,e}

{···
U→aK
K→V  | W
V→bX | cY
W→dZ | eT
···},  U>
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LL(1)
Converting from GNF to LL(1)

• We have to take care to leave the rules again in GNF...
• We can derive the initial non-terminals in the rules for K, so they start 

with a on-terminal.
• In this case, we can apply the rules for V and W:

G2 =<{U,V,W,X,Y,Z,T},
{a,b,c,d,e}

{···
U→aK
K→ bX | cY | dZ | eT
V→bX | cY
W→dZ | eT
···},  U>
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LL(1)
Converting from GNF to LL(1)

• ...and we have to remove the inaccessible symbols (V y W)

G2 =<{U,V,W,X,Y,Z,T},
{a,b,c,d,e}

{···
U→aK
K→ bX | cY | dZ | eT
···
}, 

U>
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Formalisation of LL(1) grammars
Concept

• In the remaining part of this lesson, we are going to describe formally LL(1) 
analysers, which we have already introduced informally with examples.
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Formalisation of LL(1) grammars
Example

• Consider the following grammar, and the first and next sets for each non-terminal:

G=< {E,E’,T,T’,F},
{+,*,(,),id}
{ E  → TE’

E’ → +TE’ | λ
T  → FT’
T’ → *FT’ | λ
F  → (E)  | id }, 

E>

first(E)=first(T)=first(F)={(,id}
first(E’)={+,λ}
first(T’)={*,λ}
next(E)=next(E’)={),$}
next(T)=next(T’)={+,),$}
next(F)={+,*,),$}
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Constructing LL(1) analysers
Algorithm

• The following algorithm calculates the analysis table T∈M|ΣN|×|ΣT|+1 
• In this matrix, there will be a row for each non-terminal, and a column for each 

terminal, including the end-of-program symbol $. :

1. ∀ A→α∈P repeat:
1. ∀ a∈first(α)∩ΣT A→α ∈T[A,a].
2. If λ∈first(α) 
• then, ∀ b∈next(A)   A→α ∈T[A,b] (note that b can also be $)
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Constructing LL(1) analysers
Examples

• In the grammar for the previous example

F→(E)F→idF
T’→λT’→λT’→*FT’T’→λT’

E→FT’E→FT’T
E’→λE’→λE’→+TE’E’

E→TE’E→TE’E
$)(*+id

ΣT∪{$}
ΣN
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Constructing LL(1) analysers
Examples

• Given the following grammar,

G=< {P,P’,E},
{i,t,a,e,b}
{ P  → iEtPP’ | a

P’ → eP | λ
E  → b

P>
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Constructing LL(1) analysers
Examples

• We can obtain the next table:

E→bE

P’→λ
P’→λ
P’→ePP’

P→iEtPP’P→aP

$tieba

ΣT∪{$}
ΣN
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LL(1), first and next sets
Definition

• We can define LL(1) grammars as those that comply with the following condition:

The analysis table constructed with the previous procedure is deterministic, i.e., 
all the rows contain at most one rule.

Examples

• The grammar in the first example is LL(1)
• The grammar in the second example is not LL(1)
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Selective top-down analysers
Concept

• LL(1) analysers are also called “with no backtracking”, because they are 
deterministic and it will never be necessary to backtrack during the analysis of a 
program.

• They are also called “recursive-descent” parsers, because of the kind of analysis 
programs that are produced from LL(1) grammars.

• The reason of the efficiency of these parsers is because the right-hand sides of 
the rules for each non-terminal symbol can be considered to be indexed by the 
next terminal.
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Selective top-down analysers
Automatically building a parser for an LL(1) grammar

• According to the procedure described, in an LL(1) grammar we are going to have 
two kinds of rules:
• Rules for non-terminals that have a λ-rule:

U→xX1X2...Xn|yY1Y2...Ym|...|zZ1...Zp|λ
• Rules for non-terminals that do not have a λ-rule:

U→xX1X2...Xn|yY1Y2...Ym|...|zZ1...Zp
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Selective top-down analysers
Automatically building a parser for an LL(1) grammar: λ rules

• The next C function will be generated:

int U(char * string, int i)
{
if (i < 0) return i;

/* this propagates errors */
switch (string[i]) {
case x;

i++;
i=X1(string, i);
i=X2(string, i);

···
i=Xn(string, i);
break;

case y:
i++;
i=Y1(string, i);
i=Y2(string, i);

···
i=Ym(string, i);
break;

···

case z:
i++;
i=Z1(string, i);
i=Z2(string, i);

···
i=Zp(string, i);
break;

}
return i;

}
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Selective top-down analysers
Automatically building a parser for an LL(1) grammar: rules without λ

• The next C function will be generated:

int U(char * string, int i)
{
if (i < 0) return i;

/* This propagates errors */
switch (string[i]) {
case x;

i++;
i=X1(string, i);
i=X2(string, i);

···
i=Xn(string, i);
break;

case y:
i++;
i=Y1(string, i);
i=Y2(string, i);

···
i=Ym(string, i);
break;

···

case z:
i++;
i=Z1(string, i);
i=Z2(string, i);

···
i=Zp(string, i);
break;

/* End-of-string goes to the 
default case */

default:
return –n;

/* The error will be 
different for each rule */

}
return i;

}
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Selective top-down analysers
Complete example

• Let us start with the following context-independent grammar

G3 =<{E,T,F},{i,+,-,*,/,(,)}
{E → T+E | T-E | T
T → F*T | F/T | F
F → i | (E)
}, 

E>
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Selective top-down analysers
Complete example

• The following is the grammar in Greibach Normal Form

G3 =<{E,T,M,S,P,D,C},
{i,+,-,*,/,(,)}

{E→ iPTME | (ECPTME | iDTME | (ECDTME | iME | (ECME |
iPTSE | (ECPTSE | iDTSE | (ECDTSE | iSE | (ECSE |
iPT | (ECPT   | iDT | (ECDT   | i   | (EC

T→ iPT | (ECPT   | iDT | (ECDT   | i   | (EC
M→ +
S→ -
P→ *
D→ /
C→ )},  E>
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Selective top-down analysers
Complete example

• The following is a possible LL(1) grammar, obtained from the GNF grammar by 
taking “common factor” in the right-hand sides of the rules.

G3 =<{E,T,M,S,P,D,C},
{i,+,-,*,/,(,)}

{E→ iV | (ECV
V→ *TX | /TX | +E | -E | λ
X→ +E  | -E  | λ
T→ iU | (ECU
U→ *T  | /T  | λ
C→ )},  E>
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Selective top-down analysers
Complete example

• The following would be the LL(1) analyser (continued)

int E(char * string, int i)
{
if (i < 0) return i;

/* This propagates previous 
errors */
switch (string[i]) {
case ’i’:

i++;
i=V(string, i);
break;

case ‘(‘:
i++;
i=E(string, i);
i=C(string, i);
i=V(string, i);
break;

default: return –1;/*no λ*/
}

return i;
}

int V(char * string, int i)
{
if (i < 0) return i;

/* This propagates previous 
errors */
switch (string[i]) {
case ’*’:
case ’/’:

i++;
i=T(string, i);
i=X(string, i);
break;

case ‘+‘:
case ‘-‘:

i++;
i=E(string, i);
break; /* λ */

}
return i;

}
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Selective top-down analysers
Complete example

• The following would be the LL(1) analyser (continued)

int X(char * string, int i)
{
if (i < 0) return i;

/* This propagates previous 
errors */
switch (string[i]) {
case ’+’:
case ’-’:

i++;
i=E(string, i);
break; /* λ */

}
return i;

}

int T(char * string, int i)
{
if (i < 0) return i;

/* This propagates previous 
errors */
switch (string[i]) {
case ’i’:

i++;
i=U(string, i);
break;

case ‘(‘:
i++;
i=E(string, i);
i=C(string, i);
i=U(string, i);
break;

default: return –2;/*no λ*/
}

return i;
}
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Selective top-down analysers
Complete example

• The following would be the LL(1) analyser (continued)

int U(char * string, int i)
{
if (i < 0) return i;

/* This propagates previous 
errors */
switch (string[i]) {
case ’*’:
case ’/’:

i++;
i=T(string, i);
break; /* λ */

}
return i;

}

int C(char * string, int i)
{
if (i < 0) return i;

/* Propagate previous errors 
*/
switch (string[i]) {
case ’)’:

i++;
break; 

default: return –4;/*no λ*/
}
return i;

}
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Selective top-down analysers
Complete example

• A string x would be analysed with the following call:

• If the value returned equals the length of the string, it was correct. If it is a 
negative number, it was incorrect.

• The following execution example illustrates the LL(1) analysis:

axiom( x, 0);

E(“i + i * i”, 0)
0[1]: E( “I + I * I”, 0)
1[1]: V( “I + I * I”, 1)

2[1]: E( “I + I * I”, 2)
3[1]: V( “I + I * I”, 3)

4[1]: T( “I + I * I”, 4)
5[1]: U( “I + I * I”, 5)
5[1]: returned 5

4[1]: returned 5
4[1]: X( “I + I * I”, 5)
4[1]: returned 5

3[1]: returned 5
2[1]: returned 5

1[1]: returned 5
0[1]: returned 5

5   
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Selective top-down analysers
Complete example

• The following string will not be recognised

E(“i + i *”, 0)
0[1]: E( “I + I *”, 0)
1[1]: V( “I + I *”, 1)

2[1]: E( “I + I *”, 2)
3[1]: V( “I + I *”, 3)

4[1]: T( “I + I *”, 4)
4[1]: returned -2
4[1]: X( “I + I *”, -2)
4[1]: returned -2

3[1]: returned -2
2[1]: returned -2

1[1]: returned -2
0[1]: returned -2

-2
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Syntactic analysis
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