Lesson 7: Code optimisation

Code optimisation

Introductory concepts

- This process can be performed in three places:
 - Between the semantic analysis and the code generation, to obtain optimised quadruples.
 - During the generation of the code.
 - After the generation (by optimising the code just produced).

- Perfect code optimisation is an undecidable problem (Aho, 70). Therefore,
 - It can only be performed partially.

- Optimisation and debugging are not compatible. For instance, the optimisation may reorder the instructions, or eliminate the code associated to a part of the code, so it will be much more difficult to debug the program.

Kinds of optimisations

- The different kinds of optimisation can be grouped in the following types:
 - Machine-dependent:
 - Assignment of registers
 - Special instructions
 - Code reordering
 - Machine-independent:
 - Execution at compilation time.
 - Elimination of redundancies
 - Reordering of operations
 - Frequency reduction
 - Strength reduction
Machine-dependent code optimisation

Special instructions

- Most assemblers provide special instructions that facilitate the generation of the code in assembly language.
 - For instance, in nasm
 - loop, loope, loopz, loopne, loopnz.
 - Implement loops with a counter that is decremented at each iteration, even though there is no corresponding instruction in machine code.

Machine-dependent code optimisation

Code reordering

- The underlying idea is that the order of the assembly instructions may influence the size of the final program.
- The following is an example:
 - The following ASPEL code
 a := b / c;
 d := b % c;
 - Can produce the following code in assembly language
 mov dword eax, [b]
 cdq
 idiv dword eax, [c]
 mov dword [a], eax
 mov dword eax, [b]
 cdq
 idiv dword eax, [c]
 mov dword [d], edx

Machine-dependent code optimisation

Code reordering

- That code is not as efficient as it could be, as the instruction `idiv` leaves the remainder of the division in `edx`, and it is not necessary to repeat it.
- The following code is equivalent:
 - `mov dword eax, [b]`
 - `cdq`
 - `idiv dword eax, [c]`
 - `mov dword [a], eax`
 - `mov dword eax, [b]`
 - `cdq`
 - `idiv dword eax, [c]`
 - `mov dword [d], edx`

Machine independent code optimisation

Execution during the compilation

- The motivation of this kind of optimisation is that there are some expressions whose value can be determined by the compiler during execution time.
- To do that, it is necessary to know the value of each variable at each point in the program:
 - It can be stored in the symbols table
 - Or in a special table used just for this purpose.
- This optimisation is usually applied:
 - To arithmetic and logic operations.
 - To type conversions.
Machine independent code optimisation

Execution during the compilation

- The following **algorithm** will be applied to each of the quadruples:
 - \((\text{op}, \text{op1}, \text{op2}, \text{res})\), where \(\text{op1}\) is an identifier, and \((\text{op1}, \text{v1})\) is in the symbols table \(T\)
 - We substitute the quadruple \(\text{op1}\) by \(\text{v1}\).
 - \((\text{op}, \text{op1}, \text{op2}, \text{res})\), where \(\text{op2}\) is an identifier, and \((\text{op2}, \text{v2})\) is in the symbols table \(T\)
 - We substitute the quadruple \(\text{op2}\) by \(\text{v2}\).
 - \((\text{op}, \text{v1}, \text{v2}, \text{res})\), where \(\text{v1}\) and \(\text{v2}\) are constant values
 - We eliminate the quadruple, remove from \(T\) the pair \((\text{res}, \text{v})\), if it exists, and add to \(T\) the pair \((\text{res}, \text{v1 op v2})\), unless \(\text{v1 op v2}\) produces an error. In this case, we shall output a warning message and leave the quadruple as it was.
 - Example: \(\text{if } (\text{false}) \ f = 1/0;\) (warning, not error message)
 - \((=, \text{v1}, , \text{res})\), remove from \(T\) the pair \((\text{res}, \text{v})\), if exists. If \(\text{v1}\) is a constant value, add to \(T\) the pair \((\text{res}, \text{v1})\).

- Optimised quadruples:
 - \(=, 5, i\)
 - \(=, 4, i\)
 - \(=, 6.5, f\)

Execution during the compilation: observations

- The compiler must have the values stored in the table permanently, and it has to be correctly updated.
- Whenever a variable may possibly change its value, it has to keep track of it:
 - After a label, every value is forgotten.
 - Loops
 - Function calls
 - etc.
- Problem: if the compiler executes in a computer, and generates code for a different computer, the first compiler might have less precision than the second one.

Machine independent code optimisation

Removing redundancies: introductory example

```
int a,b,c,d;
a = a+b*c; (*,b,c,t1) (*,b,c,t1)
   (+,a,t1,t2) (+,a,t1,t2)
   (=,t2,a) (=,t2,a)
d = a+b*c; (*,b,c,t3)
   (+,a,t3,t4) (+,a,t1,t4)
   (=,t4,d) (=,t4,d)
b = a+b*c; (*,b,c,t5)
   (+,a,t5,t6) (+,a,t5,t6)
   (=,t6,b) (=,t4,b)
```
Machine independent code optimisation

Removing redundancies: algorithm

- Each of the variable in the symbols table is assigned the dependency -1.
- Number the quadruples.
- for (i=0; i< number-of-quadruples ; i++) {
 - The identifier that stores the result of quadruple (i) is assigned the dependency i.
 - The quadruple number (i) will be assigned as dependency:
 \[1 + \text{max. number of dependencies of the operands}. \]
 - If
 - Either quadruple i is not an assignment, and it has the same operation code and operands as j, j<i,
 - Or quadruple i is an assignment, and it has the same operation code, operands, and result variable,
 - and the dependencies of both quadruples are the same, then:
 - Substitute the quadruple i by a null quadruple (SAME,j,0,0), which will not generate code.
 - In the next quadruples, we are going to substitute the result of quadruple i with the result of quadruple j.

Removing redundancies: example

<table>
<thead>
<tr>
<th>DEP</th>
<th>VAR</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 * b c t1 0</td>
<td>a -1</td>
<td></td>
</tr>
<tr>
<td>1 + a t1 t2</td>
<td>b -1</td>
<td></td>
</tr>
<tr>
<td>2 = t2 a</td>
<td>c -1</td>
<td></td>
</tr>
<tr>
<td>3 * b c t3 t4</td>
<td>d -1</td>
<td></td>
</tr>
<tr>
<td>5 = t4 d</td>
<td>t1 0</td>
<td></td>
</tr>
<tr>
<td>6 * b c t5 t6</td>
<td>t2 1</td>
<td></td>
</tr>
</tbody>
</table>

QUADRUPLE 0

<table>
<thead>
<tr>
<th>DEP</th>
<th>VAR</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 * b c t1 0</td>
<td>a -1</td>
<td></td>
</tr>
<tr>
<td>1 + a t1 t2</td>
<td>b -1</td>
<td></td>
</tr>
<tr>
<td>2 = t2 a</td>
<td>c -1</td>
<td></td>
</tr>
<tr>
<td>3 * b c t3 t4</td>
<td>d -1</td>
<td></td>
</tr>
<tr>
<td>4 + a t3 t4</td>
<td>t1 0</td>
<td></td>
</tr>
<tr>
<td>5 = t4 d</td>
<td>t2 1</td>
<td></td>
</tr>
<tr>
<td>6 * b c t5 t6</td>
<td>t2 1</td>
<td></td>
</tr>
</tbody>
</table>

QUADRUPLE 1

<table>
<thead>
<tr>
<th>DEP</th>
<th>VAR</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 * b c t1 0</td>
<td>a -1</td>
<td></td>
</tr>
<tr>
<td>1 + a t1 t2</td>
<td>b -1</td>
<td></td>
</tr>
<tr>
<td>2 = t2 a</td>
<td>c -1</td>
<td></td>
</tr>
<tr>
<td>3 * b c t3 t4</td>
<td>d -1</td>
<td></td>
</tr>
<tr>
<td>4 + a t3 t4</td>
<td>t1 0</td>
<td></td>
</tr>
<tr>
<td>5 = t4 d</td>
<td>t2 1</td>
<td></td>
</tr>
<tr>
<td>6 * b c t5 t6</td>
<td>t2 1</td>
<td></td>
</tr>
<tr>
<td>7 + a t5 t6</td>
<td>t2 1</td>
<td></td>
</tr>
<tr>
<td>8 = t6 b</td>
<td>t2 1</td>
<td></td>
</tr>
</tbody>
</table>
Machine independent code optimisation

Removing redundancies: example

<table>
<thead>
<tr>
<th>QUADRUPLE 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 * b c t1 0</td>
<td>a (\not\in\sqrt{2})</td>
<td></td>
</tr>
<tr>
<td>1 + a t1 t2 1</td>
<td>b -1</td>
<td></td>
</tr>
<tr>
<td>2 = t2 a 2</td>
<td>c -1</td>
<td></td>
</tr>
<tr>
<td>3 * b c t3</td>
<td>d -1</td>
<td></td>
</tr>
<tr>
<td>4 + a t3 t4</td>
<td>t1 0</td>
<td></td>
</tr>
<tr>
<td>5 = t4 d</td>
<td>t2 1</td>
<td></td>
</tr>
<tr>
<td>6 * b c t5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 + a t5 t6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 = t6 b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Machine independent code optimisation

Removing redundancies: example

<table>
<thead>
<tr>
<th>QUADRUPLE 3.1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 * b c t1 0</td>
<td>a (\not\in\sqrt{2})</td>
<td></td>
</tr>
<tr>
<td>1 + a t1 t2 1</td>
<td>b -1</td>
<td></td>
</tr>
<tr>
<td>2 = t2 a 2</td>
<td>c -1</td>
<td></td>
</tr>
<tr>
<td>3 * b c t3</td>
<td>d -1</td>
<td></td>
</tr>
<tr>
<td>4 + a t3 t4</td>
<td>t1 0</td>
<td></td>
</tr>
<tr>
<td>5 = t4 d</td>
<td>t2 1</td>
<td></td>
</tr>
<tr>
<td>6 * b c t5</td>
<td>t3 3</td>
<td></td>
</tr>
<tr>
<td>7 + a t5 t6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 = t6 b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Machine independent code optimisation

Removing redundancies: example

<table>
<thead>
<tr>
<th>QUADRUPLE 3.2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 * b c t1 0</td>
<td>a (\not\in\sqrt{2})</td>
<td></td>
</tr>
<tr>
<td>1 + a t1 t2 1</td>
<td>b -1</td>
<td></td>
</tr>
<tr>
<td>2 = t2 a 2</td>
<td>c -1</td>
<td></td>
</tr>
<tr>
<td>3 * b c t3</td>
<td>d -1</td>
<td></td>
</tr>
<tr>
<td>4 + a t3 t4</td>
<td>t1 0</td>
<td></td>
</tr>
<tr>
<td>5 = t4 d</td>
<td>t2 1</td>
<td></td>
</tr>
<tr>
<td>6 * b c t5</td>
<td>t3 3</td>
<td></td>
</tr>
<tr>
<td>7 + a t5 t6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 = t6 b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Machine independent code optimisation

Removing redundancies: example

<table>
<thead>
<tr>
<th>QUADRUPLE 3.3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 * b c t1 0</td>
<td>a (\not\in\sqrt{2})</td>
<td></td>
</tr>
<tr>
<td>1 + a t1 t2 1</td>
<td>b -1</td>
<td></td>
</tr>
<tr>
<td>2 = t2 a 2</td>
<td>c -1</td>
<td></td>
</tr>
<tr>
<td>3 SAME 0 - (0)</td>
<td>d -1</td>
<td></td>
</tr>
<tr>
<td>4 + a t3 t4</td>
<td>t1 0</td>
<td></td>
</tr>
<tr>
<td>5 = t4 d</td>
<td>t2 1</td>
<td></td>
</tr>
<tr>
<td>6 * b c t5</td>
<td>t3 3</td>
<td></td>
</tr>
<tr>
<td>7 + a t5 t6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 = t6 b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Machine independent code optimisation

Removing redundancies: example

0 * b c t1 0
1 + a t1 t2 1
2 = t2 a 2
3 **SAME** 0 - - (0)
4 + a t3 t4
5 = t4 d
6 * b c t5
7 + a t5 t6
8 = t6 b

QUADRUPLE 4.1

0 * b c t1 0
1 + a t1 t2 1
2 = t2 a 2
3 **SAME** 0 - - (0)
4 + a t1 t4 3
5 = t4 d
6 * b c t5 3
7 + a t5 t6
8 = t6 b

QUADRUPLE 5

0 * b c t1 0
1 + a t1 t2 1
2 = t2 a 2
3 **SAME** 0 - - (0)
4 + a t1 t4 3
5 = t4 d
6 * b c t5 3
7 + a t5 t6
8 = t6 b

QUADRUPLE 6

0 * b c t1 0
1 + a t1 t2 1
2 = t2 a 2
3 **SAME** 0 - - (0)
4 + a t1 t4 3
5 = t4 d
6 * b c t5 3
7 + a t5 t6
8 = t6 b
Machine independent code optimisation
Removing redundancies: example

QUADRUPLE 7.1

QUADRUPLE 7.2

Machine independent code optimisation
Removing redundancies: example

QUADRUPLE 8.1

QUADRUPLE 8.2
Machine independent code optimisation

Removing redundancies: example

\begin{align*}
(* & b & c & t1) & \quad t1 = b * c \\
(+ & a & t1 & t2) & \quad a = a + t1 \\
(= & t2 & a) & \quad \\
(+ & a & t1 & t4) & \quad d = a + t1 \\
(= & t4 & d) & \quad b = t4
\end{align*}

FINAL RESULT

Machine independent code optimisation

Reordering operations

- We can take advantage of the commutability and associability of some operations to obtain a code which is more efficient, without altering the result.

- For instance, let us consider the following quadruple:
 \[(*, b, c, -) \equiv (*, c, b, -)\]

- We shall see the following possibilities:
 - Fixing a canonical ordering of the operands in commutative operations.
 - Maximising the use of monadic operators, to increase the number of equivalent quadruples.
 - Reusing intermediate variables, when applying the properties of the operations, to transform the initial expressions.

Reordering operations

- We can order the operands according to the following order:
 1. Terms that are neither variables nor constants.
 2. Variables, by alphabetical order.
 3. Constants.

- Example:
 \[a = 1 + c + d + 3; \quad a = c + d + 1 + 3; \quad b = d + c + 2; \quad b = c + d + 2;\]
 - In this case, the reordering allows us:
 - To optimise \(1 + 3\) because it will be done during compilation time.
 - Optimise the calculations, because \(c + d\) will be identified as common parts of those expressions.

- We shall not attempt to optimise every possible situation. For instance:
 \[a = 1 + c + d + 3; \quad a = c + d + 1 + 3; \quad b = d + c + d; \quad b = c + d + d\]
 - In this case, one of the two \(c + d\) is not recognised as common part of those expressions.

Machine independent code optimisation

Reordering operations: increasing the use of unary operators

- Some sub-expressions may appear in other parts of the code, affected by a monadic operator. For instance, in this example, we have \(c - d\) and \(d - c\):

\[
\begin{align*}
a &= c - d; & (-, c, d, t1) \quad (-, c, d, t1) \\
& \quad (=, t1, , a) \quad (=, t1, , a) \\
b &= d - c; & (-, d, c, t2) \quad (-, t1, , t2) \\
& \quad (=, t2, , b) \quad (=, t2, , b)
\end{align*}
\]

- In this case, the optimisation does not reduce the number of clauses, but a clause is substituted by other which is more efficient.
Machine independent code optimisation: reordering operations: reducing intermediate variables

• Note that reducing the number of intermediate variables may be incompatible with other kinds of optimisation.

• The procedure will be illustrated with one example. Consider the following expression:

\[(a*b)+(c+d)\]

Because addition is associative:

\[(a*b)+(c+d) \equiv ((a*b)+c)+d\]

• We have two possible sets of tuples for this expression:

\[(*,a,b,t1) \quad (+,c,d,t2)\]
\[(*,a,b,t1) \quad (+,t1,c,t1)\]
\[(+,t1,t2,t1) \quad (+,t1,d,t1)\]

Because addition is commutative,

\[(a+b)+(c*d) \equiv (c*d)+(a+b)\]

• the following are alternative sets of tuples for the expression:

\[(+,a,b,t1) \quad (*,c,d,t1)\]
\[(*,c,d,t2) \quad (+,a,t1,t1)\]
\[(+,t1,t2,t1) \quad (+,t1,b,t1)\]

Algorithm for calculating the min. number of variables required

1. Build a graph for the expression.
2. If \((j,k)\) are the labels of the children of node \(i\):
3. If \((j=k)\)
 1. Associate \((k+1)\) to node \(i\).
4. Otherwise, associate \(\text{max}(j,k)\) to node \(i\).

Machine independent code optimisation: example

\[(a*b)+(c+d)\] \hspace{1cm} \[(a*b)+c)+d\]

\[+\] \hspace{1cm} \[+\]
\[\] \hspace{1cm} \[\]
\[\] \hspace{1cm} \[\]
\[\] \hspace{1cm} \[\]
\[\] \hspace{1cm} \[\]

\[(a+b)+(c*d)\] \hspace{1cm} \[a+(c*d)+b\]

\[+\] \hspace{1cm} \[+\]
\[\] \hspace{1cm} \[\]
\[\] \hspace{1cm} \[\]
\[\] \hspace{1cm} \[\]
\[\] \hspace{1cm} \[\]

Loop optimisation

• It is possible to optimise the execution of loops in the following two ways:
 1. By loop invariance:
 • An operation is invariant with respect to a loop if none of its operands changes its value during the execution of the loop.
 • In these cases, it is possible to take the comparison out of the loop, because it is not necessary to execute it inside the loop.
 2. By strength reduction:
 • This consists in substituting, inside the loop, a strong operation (one that is computationally expensive, such as the product) with a weak operation (a less expensive one), such as the addition or the change of sign.
Machine independent code optimisation

Optimising loops with strength reduction

• In the following loop:
 for (i=a; i<c; i+=b) {... d=i*k; ...}
 • the variable d receives the following values:
 d=a*k
 d=(a+b)*k
 d=(a+b+b)*k
 ...
 • We can assume that
 • b, k are invariant inside the loop (if b is an expression, all its operands should be invariant)
 • i is not modified inside the body of the loop. It only changes in the instruction i+=b
 • d is never used before the instruction, and it is not modified afterwards.

• In this case, we can substitute the loop with the following code:
 d=a*k;
 t1=b*k;
 for (i=a; i<c; i+=b, d+=t1) {...}
 • In this case, the values of d are the same as before:
 d=a*k
 d=a*k+b*k
 d=a*k+b*k+b*k
 ...
 • But, at each iteration of the loop, rather than executing a product we only need to execute an addition.

Optimising loops with strength reduction: generalisation

vb – variable of the loop
ib – invariant variable in the loop
inc – increment of vb

Optimising loops with strength reduction: example

• In the following loop:
 for (i=0; i<10; i++) {... a=(b+c*i)*d; ...}
 • The variables b, c, d are invariant in the loop.
 • We only need to identify in each sentence which is invariant, which is the increment, and which is the loop variable.

vb – variable of the loop
ib – invariant variable in the loop
inc – increment of vb
Machine independent code optimisation

Optimising loops with strength reduction: example

- Final result:

```
INIT: (=, 0, , i)
(*, c, 0, t1)
(*, c, 1, t4)
(+, b, t1, t2)
LOOP: ...
(*, t2, d, t3)
(=, t3, , a)
INCR: (+, i, 1, i)
(+, t1, t4, t1)
(+, t2, t4, t2)
```

- If we have nested loops, strength reduction should be applied starting in the inner ones.
- If there are functions calls inside the loop,
 - The compiler must know whether the function receives the reference of a variable (in this case it may not be invariant). Equally, the function might change the value of global variables.
- It a loop will only be executed a few times, the optimisation will not be appreciated. It may even degrade the performance.

- This means that loop optimisation is not always recommended. Sometimes, it is performed in two steps:
 - Analysing of the program, and gathering information about the variables.
 - Loop optimisation.
• Region optimisation:
 • When we try to optimise a complete program, we apply all these optimisations, and the program is next represented as a graph, with blocks, indicating the program's control flow.
 • There are techniques to simplify the blocks.

• Concerning dead assignments:
 • In a program, a variable might receive a value, which is not used before the variable is assigned a different value.
 • In this case, we say that the first assignment is a dead assignment, and we can remove it.
 • To identify these circumstances in the whole program may be too costly, because it may be necessary to consider every possible control flow.